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1. Preparatory stage. 

In task B, for each gene tree Gi and all sets V and P the set Ed(V,Gi) is to be 

constructed. The trivial preparatory stage described below is used to construct Ed(V,Gi) for a 

given set V and gene tree Gi. 

The preparatory stage (under a fixed P) includes: 1) construction of a 0-1-vector 

sequence of length |V0| at each tree vertex defining a tree clade, i.e. each set in P is a vector of 

0’s and 1’s of length |V0|; the number of elements is determined for each set P; 2) computing 

tags for each vector pair from P to indicate if those are nested or intersecting; 3) construction 

of sets Ed(V,Gi) for all sets V∈ P and trees Gi, and determining the sets cardinality, i = 1, .., n; 

4) construction of all decompositions of each V into two sets from P. 

1) Vectors are constructed with induction from the root toward the leaves. We assume 

that the mean number of leaves has the order of |V0|, i.e. the total number of leaves to visit is 

|V0|⋅n, the time of visiting one vertex is |V0|; the total processing time is |V0|2⋅n.  

2) The ratios of vector nesting and intersecting are computed in time  |P|2⋅|V0|.  

3) Sets Ed(V,Gi) under a given V for all gene trees Gi are constructed by visiting each 

tree edge toward the leaves. If for current edge е the expression Mе⊆V is true, it is added to 

Ed(V,Gi) and the next edge е1 is visited; е1 is not comparable with e relative to the order <. The 

visiting time is |V0|⋅n, because the information Mе⊆V is already computed on step 2). The total 

stage computing time is then |P|⋅|V0|⋅n. 

4) Decompositions of each set V from P into two sets from P are computed in time |P|3, 

which normally does not exceed Сn3⋅|V0|3. For each triad V1, V2, V from P it is to be 

determined that V1 and V2 are not intersecting, V1, V2 are nested in V and |V1|+|V2| = |V|. All 

decompositions from P require memory storage of |P|2, because each set has |P| 

decompositions at maximum.  

Thus, the entire preparatory stage requires the time of |V0|2⋅n+|P|2⋅|V0|+|P|⋅|V0|⋅n+|P|3, 

which normally does not exceed Сn3⋅|V0|3. Storing all vectors, ratios, decompositions and sets 

Ed(V,Gi) requires the memory of |P|⋅|V0|+|P|2, which in average cases does not exceed 

Сn2⋅|V0|2. 

 

2. The principal algorithm of building basic trees. А sketch of the algorithm is 

provided, while a detailed description is given in [7].  

As a result of the preparatory stage, sets Ed(V,Gi) are built for each gene tree Gi and 

each set V from P. For each V, all decompositions in P are constructed. As described below, 



dynamic programming is used to define basic sets V from P, and each basic V is computed a 

score c(V) and minimal decomposition into two sets from P with induction. Such 

decomposition of each basic set V defines a tree S(V), the basic tree in set V. The vertices of 

S(V) correspond to sets from P, the root – to set V. The set of leaves in S(V) corresponds to the 

set V, clades of S(V) are contained in P. If set V0 is not basic, the task B cannot be solved. 

Otherwise, the tree S(V0) is a solution of the task. Scenarios for all trees Gi and species tree 

S(V0) are constructed concurrently. 

Define a subtree T of the tree Gi as consistent with the set of leaves V if (1) the set of 

leaves in T is nested in V, and (2) for no other tree that contains T condition (1) is true. In 

scenarios, superroots of all subtrees in G that are consistent with V will map into the root tube 

S(V), and c(V)  is the total score of these mappings. The score is computed along with other 

parameters that allow to reconstruct the mappings (ref. to the example below). 

Description of the induction process. 

At the initial step, singleton sets V from P are defined, where c(V)=0 and the 

corresponding basic tree S(V) has a single leaf. 

Define V as a set from P; all smaller sets are already processed. Define (V1,V2) as a 

decomposition of V. If no such pair is found, the set V is tagged as non-basic and is not 

processed further. With induction, scores  c(V1), c(V2) and trees S(V1), S(V2) are already 

computed. 

All trees Gi are arbitrarily visited. In the current Gi, all vertices are visited to determine 

the number k(V,V1,V2,Gi) of vertices, for which one descendant edge belongs to Ed(V1,Gi), and 

another – to Ed(V2,Gi). Define  

(V,V1,V2,Gi)= Ed(V1,Gi)|+|Ed(V2,Gi)|–2 k(V,V1,V2,Gi) 

and 

d(V,V1,V2,Gi)=Ed(V1,Gi)|+|Ed(V2,Gi)|–|Ed(V,Gi)|–k(V,V1,V2,Gi). 

Here, powers of all sets Ed(V,Gi) are computed during the preparatory stage. Find the 

decomposition of V into V1
* and V2

*, for which  
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is minimal over all V1 and V2. Then, by definition, с(V) is value (2) at the minimal 

decomposition <V1
*,V2

*>. The basic tree S(V) is obtained by adding the root to basic trees 

S(V1
*) and S(V2

*); the root corresponds to V, and its descendent clades – to V1
* and V2

*. 

The end of principal algorithm. An accurate and sophisticated proof of (2) is given in 

[7]. The computing time of  |P|2⋅|V0|⋅n is achieved by processing at maximum |P| of different 

decompositions for each set from P and visiting all vertices in all trees in each decomposition. 

Computing the ratios of nesting and intersecting of sets from P requires the time of 

|P|2⋅|V0|, building sets Ed(V,Gi) for all V from P – the time of |V0|2⋅n+|P|2⋅|V0|+|P|⋅|V0|⋅n, 



constructing all decompositions – the time of |P|3. Thus, the total time complexity of the 

principal algorithm and the preparatory stage is |V0|2⋅n+|P|2⋅|V0|+|P|⋅|V0|⋅n+|P|3+|P|2⋅|V0|⋅n, 

which normally does not exceed Сn3⋅|V0|3. Storing all vectors, ratios, decompositions and sets 

Ed(V,Gi) requires the memory of |P|⋅|V0|+|P|2, which in average cases does not exceed 

Сn2⋅|V0|2. 

Below we provide intuitive justifications of (2) that are formalized in [7]. Define fixed 

mappings fi of each Gi with the set of leaves V0 into the species tree S, and a subtree S' with the 

set of leaves V in S. The duplication point g from Gi or speciation point g from Gi is fi(g) if 

fi(g) is a tube or a vertex in the species tree, correspondingly. Call the loss point <e,s> the 

vertex s. Lemma 2a dictates that the total score c(V,S') of duplications and losses in the subtree 

S' starting from its root tube d over all trees depends only on S'. Indeed, c(V,S') is defined only 

by Ui(Ed(V,Gi)) and the topology of subtree S'. The root branching in S' defines the 

decomposition of set V into sets V1 and V2. The algorithm enumerates all decompositions of V 

into sets from P, therefore it is enough to prove that (2) correctly estimates the minimal score 

c(V,S') over all S', all clades from S' belong to P and the root branching in S' produces the 

decomposition of V into V1 and V2. In induction, the second and third items already equal the 

minimal scores of subtrees with leaf sets V1 and V2, starting from the root-descendent tubes d1 

and d2, correspondingly. It is to show that the first item equals the total score of duplications in 

the root tube d and losses in the root branching r of subtree S'. Let d contain n edges over all 

input trees, d1 contain n1 edges, and d2 – n2 edges. According to Lemma 2a, these equal the 

powers of sets  Ui(Ed(V,Gi)), Ui(Ed(V1,Gi)), Ui(Ed(V2,Gi)). As a duplication cannot occur in a 

tube, the number of edges in tube d can only increase due to duplications. All edges in Gi that 

reach the end of tube d pass the branching r and bifurcate (speciation) or continue in tubes d1 

or d2 with truncation at the branching (a loss occurs in one of the descendent tubes). Thus, 

n≤n1+n2 (ref. also to Lemma 2b). Consider the set M of input tree vertices that map into d or r, 

the vertices intercalating the edges that map into d and those that map into d1 or d2. The set M 

is divided into non-intercesting subsets corresponding to edges mapped in d and defines a tree 

with leaves that correspond to some edges mapped in d1 or d2. The number of inner vertices in 

a tree is the number of leaves minus one. Therefore M contains the exactly k=n1+n2–n of 

vertices, each representing a duplication in tube d or speciation at branching r. Then, the total 

number of duplications and speciations equals k. The number of speciations is obtained by 

visiting all vertices in all trees and finding vertices with one descendent edge contained in d1, 

and the other – in d2; such vertices correspond exactly to speciations in r according to the 

minimal mapping in Lemma 1. The number of duplications in tube d is obtained by subtracting 

this number from k. The number of losses in r is n1+n2–2k, because each n1+n2 edges mapped 

in d1 or d2 either speciated or truncated in r. Each speciation event involves two edges, one 



entering d1, and another – d2; losses correspond to truncated edges. According to the 

algorithm, the first item in (2) indeed equals to the total score of duplications in tube d and 

losses at the root branching r. 

3. An case example of principal algorithm. Consider ten trees Gi in Fig. 3. 

 

Figure 3. An artificial case. The supertree S* and ten input gene trees. 

 
 

The input trees were selected for the ease of inferring the supertree S*. Here V0 = {a,b,c,d,e}. 

Define P as a set of species containing all clades in all input trees. Define the loss score as 2, 

the duplication score as 3. With (2) recursively estimate the scores of all sets in P. The scores 

of singleton sets are null by definition. Estimate the scores of ten two-element sets V from P. 

Estimations for the set V = {x,y} obtained with its single decomposition into V1 ={x} and V2 

={y} are given in Table 1. 

 

Table 1. Scores of two-element sets. The first and forth columns contain the values of x and y, 

the third and sixth – the costs of {x,y}. 

V={x,y} t c(V)  V={x,y} t c(V) 

a,b 6 24  b,d 8 32 

c,d 6 24  a,e 9 36 

a,c 8 32  b,e 9 36 

a,d 8 32  c,e 9 36 

b,c 8 32  d,e 9 36 

 



Here we detail the calculations. Consider the two cases when the current tree Gi does 

and does not contain the set V. In both cases |Ed(V1,Gi)|=|Ed(V2,Gi)|=1. In the first case 

|Ed(V,Gi)| =2, in the second case |Ed(V,Gi)| =1; it follows from the definition of set Ed(V,Gi) or 

the algorithm of its construction described above. In the first case, the tree Gi does not contain 

vertices with one descendent edge belonging to Ed(V1,Gi) and another – to Ed(V2,Gi), while in 

the second case one such vertex exists. Thus,  and  equal 2 and 0 

in the first case, and are null in the second case. Substitute  and  

into (2). The column t of Table 1 contains the amount of gene trees without clade V for each 

set V. Then we obtain the value c(V) indicated in the Table; the sets {a,b} and {c,d} have the 

minimal score of 24.  
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Define a decomposition of V that coincides with that in S* as a standard 

decomposition, and others as non-standard. The algorithm does not rely on the tree S* and 

enumerates all decompositions.  

Now consider all three-element sets from P. Let us exemplify the procedure with V = 

{c,d,e}. Here the standard decomposition is V1 = {c,d} and V2 = {e}. Compute the item 

c(V,V1,V2) of function (2). For each gene tree Gi there can be: 1) {c,d} is a clade in Gi, {c,d,e} 

is not (two such trees); 2) {c,d,e} is a clade in Gi, {c,d} is not (two such trees); 3) {c,d} and 

{c,d,e} are not clades in Gi (four such trees); 4) {c,d} and {c,d,e} are clades in Gi (two such 

trees). 

In cases 1) and 4) |Ed(V1,Gi)| = |Ed(V2,Gi)| =1, in cases 2) and 3) |Ed(V1,Gi)| =2, 

|Ed(V2,Gi)| =1. In case 1) |Ed(V,Gi)| =2, in cases 2) and 4) |Ed(V,Gi)| =1, in case 3) |Ed(V,Gi)| 

=3. In cases 1) and 3) the tree Gi does not contain vertices with one descendant belonging to 

Ed(V1,Gi), and another – to Ed(V2,Gi)), in cases 2) and 4) one such vertex exists. Therefore, 

 and  equal 2 and 0 in case 1), 1 and 1 in case 2), 3 и 0 in case 3), 

and 0 and 0 in case 4). With equation (2), for a standard decomposition we obtain: c(V,V
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1,V2) 

= 8 + 10 + 24 + 0 + c({c,d}) + c({e}) = 42 + 24 + 0 = 66, because with induction c({c,d}) = 24 

and c({e}) = 0. 

Now consider a non-standard decomposition of the same set V={c,d,e} into V1 = {c,e} 

and V2 = {d}, оne of the two symmetric decompositions. Compute the value of c(V,V1,V2). For 

each Gi there are possibilities: 1) {c,d} is a clade in Gi, {c,d,e} is not (two such trees); 2) 

{c,d,e} is a clade in Gi, {c,e} is not (three such trees); 3) none of the sets {c,d}, {c,e}, {d,e} is 

not a clade in Gi (four such trees); 4) {c,e} and {c,d,e} are clades in Gi (one such tree). 

In cases 1), 2) and 3) Ed(V1,Gi)| =2, |Ed(V2,Gi)| =1, in case 4) |Ed(V1,Gi)| =|Ed(V2,Gi)| 

=1. In case 1) |Ed(V,Gi)| =2, in cases 2) and 4) |Ed(V,Gi)| =1, in case 3) |Ed(V,Gi)| =3. In cases 

1), 2) and 4) the tree Gi possesses one vertex with one descendant belonging to Ed(V1,Gi), and 



another – to Ed(V2,Gi)), in case 3) such vertices lack. Thus,  and  

equal 1 and 0 in case 1), 1 and 1 in case 2), 3 и 0 in case 3), and 0 and 0 in case 4). 
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With equation (2), for this non-standard decomposition we obtain: c(V,V1,V2) = 4 + 15 

+24 +0 +c({c, e}) +c({d}) = 43 + 36 + 0 = 79, because with induction c({c, e}) = 36 and 

c({d}) = 0. As the second non-standard decomposition has the same score, we conclude that 

all decompositions of V into two subsets from P are considered, and choose the minimal 

decomposition according to equation (2) (here – 66, a standard decomposition). Thus, the tree 

({c, d, e}) coincides with the subtree in S*. 

Analogously, c(V0,V1,V2) is computed for V0 = {a,b,c,d,e} and its standard 

decomposition into V1 = {a,b} and V2 = {c,d,e} (equals 128) and non-standard decompositions 

(the minimal value is 143). The output tree S(V0) coincides with the tree S* and has the score 

of 128. 

4. The auxiliary algorithm. In task A2, our algorithm implements only a heuristic 

solution and infers the supertree as S' on the set {S(V): V is a basic set} (described below). It 

reconciles the set S(V) into S'. No all clades from S' belong to P, therefore S' is not necessarily 

a solution in task B, as well as in task A2. Computer modeling suggests both S' = S(V0) and S' 

≠ S(V0) are possible, with the tree S' being biologically more relevant in the latter case. 

The auxiliary algorithm: reconciliation of basic trees S(V) into the tree S'. A variety of 

pertinent algorithms exist (ref., e.g., to [14], also for further references). However the 

algorithm complexity is not assessed in [14], it is obviously exponential. The efficiency 

strongly depends on the condition of consistency among the reconciled trees, e.g., in terms of 

Theorem 1b, which holds for basic trees. 

Define the score of an arbitrary species tree S with the leaf set V against an arbitrary 

gene tree G as a score of mapping the tree G' obtained from G by pruning all leaves not 

contained in V; more precisely, by pruning subtrees with all leaves not contained in V. The 

score of the arbitrary species tree S is defined as a sum of scores of S against all trees in {S(V): 

V is a basic set}.   

At the initial step, by enumeration we find a three-leaf tree with a minimal score. It is 

used as a seed tree S.  

At the induction step, all possible pairs <s,e> are selected, where s is a species not 

present in the seed S, and e is an edge in S, including the root. For each pair <s,e>, a new edge 

is added to S connecting the midpoint in e with the leaf species s. Compute the score of the 

resulting tree S(<s,e>) and choose a pair  <s',e'> with the minimal score. The seed S is 

extended into S(<s',e'>), i.e. the new S becomes S(<s',e'>). The induction continues over all 

eaves and constructs the final S'. The algorithm generally has a cubic complexity, which 



becomes square in many cases, as computer modeling suggests. The end of the auxiliary 

algorithm.

The maximal number of minimal decompositions is trivially estimated as |P|. The 

output of the above described principal algorithm is based on one of the minimal 

decompositions for each V from P, and it, in principal, outputs not all basic trees S(V). To 

obtain an exhaustive set of basic trees, the algorithm must enumerate all minimal 

decompositions at each induction step to produce S(V). Such algorithm can be exponential, 

because its maximal complexity is trivially estimated as |P||V0|. In our study, several minimal 

decompositions occurred rarely (at maximum three), and this version of the algorithm required 

the same computing time as the principal algorithm.  

To characterize trees from {S(V): V is a basic set}, i.e. to provide an axiomatic 

definition of the basic tree, function 1* in task B is to be generalized by summing over all 

subtrees G' with root edges belonging to Ed(V,Gi), and substituting V0 with V.  

We obtain the functional  

С(V,S) = Σi ΣG' [cl ·l(fG',G',S) + cd ·d(fG',G',S)],              (3) 

where V is a basic set from P. 

 

Task B is then extended into task C. If V  = V0, then all G' from Gi coincide with Gi and 

function (3) is reduced to function (1), and task C – to task B. For any G' and S, variable fG' 

can be substituted in function (3) by the only (according to Lemma 1) scenario h(G',S) for 

these G' and S. 

 

Theorem 1A. Let P be a set of clades. 

For any basic set V from P, the constructed basic tree S(V) is a solution of task C. Vice versa, 

any solution of task B is S(V), where V is a basic set from Р, under the corresponding 

succession of minimal decompositions.  

The proof of Theorem 1A is given in [7].  

 

5. A computer program of building supertrees is available at 

http://lab6.iitp.ru/ru/super3gl/. 

 

6. Case examples with biological data are available at http://lab6.iitp.ru/ru/super3gl/. 

http://lab6.iitp.ru/ru/super3gl/
http://lab6.iitp.ru/ru/super3gl/

