JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 43(2009) N 6 p. 937-945;
W.-B. Cao, L.-L. Zheng, Z.-F. Zhang, X.-B. Li

Genetic diversity of starch synthesis genes of Chinese maize (Zea mays L.) with SNAPs

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, HuaZhong Normal University, Wuhan 430079, China
Received - 2008-10-20; Accepted - 2009-01-23

Analysis of genetic diversity in maize populations is a very important step for understanding genetic structure and subsequently for genetic manipulations in maize breeding. Sh2, Bt2, Sh1, Wx1, Ae1 and Su1 involved in starch biosynthesis are important genes associated with yield and quality traits in maize breeding programs. In this study, genetic diversity of these six genes in 67 Chinese elite maize inbred lines was measured using single-nucleotide amplified polymorphisms (SNAPs). The results indicated that the number of haplotypes of each gene and population was far less than theoretically expected 2n (n = the number of the SNAPs). Phenetic clustering analysis showed that the kernel phonetic (semi-) dent and (semi-) flint lines were belong to distinct subclusters based on haplotypes of SNAPs, with a few exceptions. In addition, the genetic origin of these maize inbred lines was associated with the clustered subgroups. Intragenic linkage disequilibrium (LD) was observed in some of the SNAPs in Bt2, Sh1 and Ae1, while intergenic LD was observed in some of the SNAPs in Bt2, Sh1 and Su1. Association study of kernel phenotypes and SNAP haplotypes showed that the (semi-) dent and (semi-) flint lines had the common haplotype of TA and CC at two SNAP sites in Bt2 (Bt2-2 and Bt2-5) , respectively. Two haplotypes of ATGT and GTGC at four SNAP sites in Sh1(Sh1-2, Sh1-3, Sh1-4 and Sh1-5) were associated with temperature and tropical origin of the maize inbred lines, respectively.

Maize, starch biosynthesis, SNAP, genetic diversity, molecular breeding, haplotype, linkage disequilibrium



JMB-FOOTER RAS-JOURNALS