JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 57(2023) N 6 p. 921-928; DOI 10.1134/S0026893323060055 Full Text

E.V.Ermilova1*

Nitric Oxide(II) in the Biology of Chlorophyta

1St. Petersburg State University, St. Petersburg, 199034 Russia

*e.ermilova@spbu.ru
Received - 2023-03-01; Revised - 2023-03-20; Accepted - 2023-03-22

NO is a gaseous signaling redox-active molecule that functions in various eukaryotes. However, its synthesis, turnover, and effects in cells are specific in plants in several aspects. Compared with higher plants, the role of NO in Chlorophyta has not been investigated enough. However, some of the mechanisms for controlling the levels of this signaling molecule have been characterized in model green algae. In Chlamydomonas reinhardtii, NO synthesis is carried out by a dual system of nitrate reductase and NO-forming nitrite reductase. Other mechanisms that might produce NO from nitrite are associated with components of the mitochondrial electron-transport chain. In addition, NO formation in some green algae proceeds by an oxidative mechanism similar to that in mammals. The recent discovery of L-arginine-dependent NO synthesis in the colorless alga Polytomella parva suggests the existence of a protein complex with enzyme activities that are similar to animal nitric oxide synthase. This latter finding paves the way for further research into potential members of the NO synthases family in Chlorophyta. Beyond synthesis, the regulatory processes to maintain intracellular NO levels are also an integral part for its function in cells. Members of the truncated hemoglobins family with dioxygenase activity can convert NO to nitrate, as was shown for C. reinhardtii. In addition, the implication of NO reductases in NO scavenging has also been described. Even more intriguing, unlike in animals, the typical NO/cGMP signaling module appears not to be used by green algae. S-nitrosylated glutathione, which is considered the main reservoir for NO, provides NO signals to proteins. In Chlorophyta, protein S-nitrosation is one of the key mechanisms of action of the redox molecule. In this review, we discuss the current state-of-the-art and possible future directions related to the biology of NO in green algae.

Chlorophyta, NO, nitrate reductase, NO-synthase, S-nitrosation



JMB-FOOTER RAS-JOURNALS