JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 57(2023) N 2 p. 312-319; DOI 10.1134/S002689332302022X Full Text

A.V. Yudkina1,2, E.A. Kovalenko3, A.V. Endutkin1, E.P. Panferova1, A.A. Kirilenko3, A.A. Kokhanenko3, D.O. Zharkov1,2*

Factors Affecting the Stability of the Trimer of 2'-Deoxyuridine 5'-Triphosphate Nucleotide Hydrolase from Escherichia coli

1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
2Novosibirsk State University, Novosibirsk, 630090 Russia
3Tomsk State University, Tomsk, 634050 Russia

*dzharkov@niboch.nsc.ru
Received - 2022-07-29; Revised - 2022-08-16; Accepted - 2022-08-16

2'-Deoxyuridine 5'-triphosphate nucleotide hydrolase (Dut) hydrolyzes dUTP to dUMP and pyrophosphate to prevent erroneous incorporation of dUMP from the dUTP metabolic pool into DNA. Dut is considered as a promising pharmacological target for antimetabolite therapy. Enzymatically active Dut is a trimer that binds the substrate at the interface between the subunits. High-speed nanoscale differential scanning fluorimetry (nanoDSF) was used to study how various physicochemical factors affect the stability of the Escherichia coli Dut trimer. Unlike with monomeric proteins, thermal unfolding of Dut occurred in two steps, the first one corresponding to dissociation of the trimer into monomeric subunits. Hydrophobic interactions and hydrogen bonds at the interfaces between the subunits were found to contribute most to trimer stabilization. The binding of nucleotide ligands partly stabilized the Dut trimer. In general, nanoDSF is a convenient assay for screening low-molecular-weight compounds for their ability to destabilize the active Dut trimer.

dUTPase, protein-protein interactions, oligomerization, differential scanning fluorimetry



JMB-FOOTER RAS-JOURNALS