JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 55(2021) N 3 p. 381-397; DOI 10.1134/S0026893321020308 Full Text

V.N. Serebrova1*, E.A. Trifonova1, V.A. Stepanov1

Natural Selection as a Driver for the Genetic Component of Preeclampsia

1Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Tomsk, 634050 Russia

*vika.serebrova@medgenetics.ru
Received - 2020-09-25; Revised - 2020-11-28; Accepted - 2020-12-01

Preeclampsia (PE) is a severe hypertensive pathology and affects 2-8% of pregnancies worldwide. Its etiopathogenesis is poorly understood, and prognostic biomarkers and effective treatments are unavailable for this pregnancy complication, determining the high rates of maternal and perinatal morbidity and mortality. Racial and ethnic differences in PE incidence are of interest to study in terms of evolutionary medicine because such variability can be considered as a side effect of adaptive changes that have occurred in the genetic structure of modern populations since the dispersal of Homo sapiens from Africa. Genetic diversity at 10 regulatory single nucleotide polymorphisms (rSNPs) associated with PE was studied in North Eurasian populations and world populations of the 1000 Genomes Project. The role of natural selection in the formation of this genetic diversity was assessed at the microevolutionary level. High interpopulation diversity was observed with the greatest contribution being made by allele frequencies of NDRG1 rs3802252 (FST = 0.157). Signatures of natural selection were detected for rs10423795 of LHB, rs2167270 of LEP, rs2227262 and rs3802252 of NDRG1, rs56153523 and rs8109071 of SYDE1, and rs72959687 of INHA. The results are consistent with two evolutionary hypotheses of PE, namely, those of ancestral susceptibility and genetic conflicts.

preeclampsia, differentially expressed genes, regulatory single nucleotide polymorphisms, human populations, genetic diversity, natural selection



JMB-FOOTER RAS-JOURNALS