JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 43(2009) N 3 p. 418-425;
A.A. Evdokimov, V.V. Zinoviev, V.V. Kuznetsov, N.A. Netesova, E.G. Malygin

Design of oligonucleotide inhibitors for human DNA methyltransferase 1

State Research Center of Virology and Biotechnology Vector, Kol'tsovo, Novosibirsk region, 630559, Russia
Received - 2008-08-04; Accepted - 2008-11-06

Mammalian DNA methyltransferase 1 (Dnmt1) is responsible for copying the DNA methylation pattern during cell division. Since Dnmt1 plays an important role in carcinogenesis, it is of particular interest to search for its specific inhibitors. To design oligonucleotide inhibitors of human Dnmt1, a number of singlestranded, double-stranded, and hairpin DNA structures containing a canonical or a modified Dnmt1 recognition site (5'-CG) were constructed on the basis of a 22-nt sequence. Structural features such as a C:A mismatch, phosphorothioates, and hairpins proved capable of incrementally increasing the oligonucleotide affinity for Dnmt1. An improvement of inhibitory properties was also achieved by replacing the target cytosine with 5,6-dihydro-5-azacytosine, 5-methyl-2-pyrimidinone, or 6-methyl-pyrrolo-[2,3-d]-2-pyrimidinone. The concentration that caused 50% inhibition of methylation of 1 μM poly(dI-dC)- poly(dI-dC), a conventional DNA substrate, was approximately 10-7 M for the most efficient oligonucleotides. Under the same in vitro conditions, these oligonucleotide inhibitors demonstrated a substantially stronger effect compared to known Dnmt1 inhibitors, which were used as controls.

human DNA methyltransferase 1, oligodeoxyribonucleotides, enzyme-substrate interaction, enzyme inhibition



JMB-FOOTER RAS-JOURNALS