JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 43(2009) N 2 p. 198-210;
M.Yu. Sologub1,2, S.N. Kochetkov2, D.E. Temiakov1

Transcription and its regulation in mammalian and human mitochondria

1Department of Cell Biology, University of Medicine and Dentistry of New Jersey School of Osteopathic Medicine, Stratford, NJ, 08084, USA
2Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
Received - 2008-08-01; Accepted - 2008-08-01

In eukaryotic cells, mitochondria are the primary source of ATP, which is generated by oxidative phosphorylation. Mammalian and human mitochondria contain their own genome, which is maternally inherited. Defects in mitochondrial gene expression result in a number of human diseases and contribute to aging. Transcription of mitochondrial genes is carried out by unique transcription machinery, consisting of a single-subunit bacteriophage T7-like mitochondrial RNA polymerase and several nuclear-encoded transcription factors. Mitochondrial transcription (and, consequently, oxidative phosphorylation) may be regulated by transcription initiation and termination factors and changes in ATP levels in response to alterations in cell metabolic demands. Recent data suggest that mitochondrial transcription is coordinated with other crucial processes, such as DNA replication and translation, indicating the importance of studies of the molecular mechanisms of mitochondrial gene expression.

Mitochondria, transcription, RNA polymerase, regulation of transcription, transcription factors



JMB-FOOTER RAS-JOURNALS