JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 46(2012) N 2 p. 316-321;
L.R. Varzhabetyan1, D.V. Glazachev2, K.B. Nazaryan1*

Molecular Dynamics Simulation Study of Tubulin Dimer Interaction with Cytostatics

1Russian-Armenian (Slavonic) University, Yerevan 0051 Armenia
2Institute of Molecular Biology, National Academy of Sciences, Yerevan 0014 Armenia

*karen.nazaryan@gmail.com
Received - 2011-06-20; Accepted - 2011-09-15

Colchicine, podophylotoxin, and indibulin are natural cytostatics that are used in the treatment of neoplasms. However, application of the compounds is restricted due to their high toxicity and low specificity. Computational experiments modeling tubulin interactions with the cytostatics seem a promising approach to design new analogues of the above-mentioned drugs with higher cytostatic activity and lower toxicity. Therefore, the CHARMM software was used to examine the macromolecules using molecular dynamics and mechanics methods. Particularly, a procedure was applied according to which molecules of each studied cytostatics were placed at several various random positions around the predicted binding site on tubulin. As a result, cytostatic binding regions were identified on the tubulin molecule. It was shown that, during the interaction, structural alterations occurred in these regions that may be responsible for tubulin polymerization. Thus, alterations have been revealed for the first time in the structure of tubulin in the regions of cytostatic binding that can substantially affect its function.

molecular dynamics simulation, tubulin dimer, indibulin, colchicine, podophylotoxin



JMB-FOOTER RAS-JOURNALS