2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 52(2018) N 6 p. 812-822; DOI 10.1134/S0026893318060183 Full Text

G.B. Zavilgelsky1*, R.S. Shakulov1

Mechanisms and Origin of Bacterial Biolumenescence

1State Research Institute of Genetics and Selection of Industrial Microorganisms, National Research Center "Kurchatov Institute", Moscow, 117545 Russia

Received - 2018-04-15; Accepted - 2018-05-30

The origin of bioluminescence in living organisms was first mentioned by Charles Darwin (1859) and remains obscure despite significant success achieved over the past decades. Here we discuss the mechanisms of bacterial bioluminescence. We have the main results from structural and functional analysis of the genes of lux operons, enzymes (luciferase), and mechanisms of bioluminescence in several species of marine bacteria, which belong to three genera, Vibrio, Aliivibrio, and Photobacterium (A. fischeri, V. harveyi, P. leiognathi, and P. phosphoreum), and in terrestrial bacteria of the genus Photorhabdus (Ph. luminescens). The structure and mechanisms for the regulation of the expression of the lux operons are discussed. The fundamental characteristics of luciferase and luciferase-catalyzed reactions (stages of FMNH2 and tetradecanal oxidation, dimensional structure, as well as folding and refolding of the macromolecule) are described. We also discuss the main concepts of the origin of bacterial bioluminescence and its role in the ecology of modern marine fauna, including its involvement in the processes of detoxification of the reactive oxygen species and DNA repair, as well as the bait hypothesis.

bioluminescence, bacterial luciferase, lux operon, quorum sensing, folding, refolding, oxygen, detoxification