JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 46(2012) N 1 p. 75-84;
E.L. Subbotina1, V.B. Loktev1,2*

Molecular Evolution of the Tick-Borne Encephalitis and Powassan Viruses

1State Research Center of Virology and Biotechnology "Vector", Koltsovo, 630559 Russia
2Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia

*loktev@vector.nsc.ru
Received - 2011-02-15; Accepted - 2011-05-18

Issues associated with newly emerging viruses, their genetic diversity, and viral evolution in modern environments are currently attracting growing attention. In this study, a phylogenetic analysis was performed and the evolution rate was evaluated for such pathogenic flaviviruses endemic to Russia as tick-borne encephalitis virus (TBEV) and Powassan virus (PV). The analysis involved 47 nucleotide sequences of the TBEV genome region encoding protein E and 17 sequences of the PV NS5-encoding region. The nucleotide substitution rate was estimated as 1.4 10-4 and 5.4 10-5 substitutions per site per year for the E proteinencoding region of the TBEV genome and for the NS5 genome region of PV, respectively. The ratio of nonsynonymous to synonymous nucleotide substitutions (dN/dS) in viral sequences was calculated as 0.049 for TBEV and 0.098 for PV. The highest dN/dS values of 0.201-0.220 were found in the subcluster of Russian and Canadian PV strains, and the lowest value of 0.024 was observed in the cluster of Russian and Chinese strains of the Far Eastern TBEV genotype. Evaluation of time intervals between the events of viral evolution showed that the European subtype of TBEV diverged from the common TBEV ancestor approximately 2750 years ago, while the Siberian and Far Eastern subtypes emerged approximately 2250 years ago. The PV was introduced into its natural foci of the Russian Primorskii krai only approximately 70 years ago; these strains were very close to Canadian PV strains. The pattern of PV evolution in North America was similar to the evolution of the Siberian and Far Eastern TBEV subtypes in Asia. The moments of divergence between major genetic groups of TBEV and PV coincide with historical periods of climate warming and cooling, suggesting that climate change was a key factor in the evolution of flaviviruses in past millennia.

flaviviruses, tick-borne encephalitis virus, Powassan virus, synonymous and nonsynonymous substitutions, phylogenetic analysis, molecular evolution



JMB-FOOTER RAS-JOURNALS