JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 47(2013) N 6 p. 807-813;
B.A. Malyarchuk*

Mutational Process in Protein-Coding Genes of Human Mitochondrial Genome in Context of Evolution of Homo Genus

Institute of Biological Problems of the North, Far-Eastern Branch of the Russian Academy of Sciences, Magadan, 685000, Russia

*malyarchuk@ibpn.ru
Received - 2013-01-11; Accepted - 2013-05-04

The human mitochondrial genome, although small in size, shows a high level of variation that differs across nucleotide groups. In this work, mutation rates in mtDNA were compared in species of the Homo genus, including humans, Neanderthals, Denisova hominins, and other primate species. It was found that more than half (56.5%) of the polymorphisms in protein-coding genes of human mtDNA are actually reverse mutations to the pre-H. sapiens state of the mitochondrial genome. Among hypervariable nucleotide positions, only a small portion of mutations are specific to H. sapiens, while the majority of mutations (both nucleotide and amino acid substitutions) result in a loss of Homo-specific variants of polymorphisms. Most commonly, polymorphism variants specific to H. sapiens arise as a result of unique forward mutations and disappear mainly due to multiple reverse mutations, including those in mutational hot spots.

mitochondrial DNA, phylogeny, human, genus Homo, spontaneous mutagenesis, mutational hot spots



JMB-FOOTER RAS-JOURNALS