JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 44(2010) N 1 p. 89-96;
I.A. Akimov, E.L. Chernolovskaya*

Silencing of the CCNB1, Her2, and PKC Genes by Small Interfering RNA Differently Retards the Division of Different Human Cancer Cell Lines

Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090, Russia

*elena_ch@niboch.nsc.ru
Received - 2009-05-20; Accepted - 2009-07-23

Deregulation of genes encoding proteins responsible for cell cycle control frequently accompanies cell malignization and switches the cell program from differentiation and apoptosis to uncontrollable proliferation. We used siRNAs targeted to HER2, protein kinase C (PKC) and cyclin B1 (CCNB1) mRNAs to evaluate the therapeutic potential of the suppression of genes coding for key cell cycle regulators in different human cancer cells. The CCNB1, HER2, or PKC mRNA levels were efficiently reduced within 48 h after transfection with siCycB1, siHER2 or siPKC, respectively. Silencing of HER2, PKC, and CCNB1 substantially reduced the growth rates of all cell lines under study except HL-60 but did not affect cell death or apoptosis. The most pronounced inhibition of cell division was induced by siCycB1 in SK-N-MC cells and by siPKC in MCF-7 cells. We conclude that the selected siRNAs inhibit tumor cell division, and the investigated genes can be promising targets in cancer treatment.

siRNA, HER2, CCNB1, PKC, adenocarcinoma, neuroblastoma, myeloblastoma, apoptosis



JMB-FOOTER RAS-JOURNALS