JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 50(2016) N 4 p. 621-629; DOI 10.1134/S0026893316040051 Full Text

B.M. Kirilenko1, E.N. Grineva1, D.S. Karpov1,2*, V.L. Karpov1

Inhibition of the expression of proteasomal genes Saccharomyces cerevisiae by artificial transcriptional repressor

1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow,
2Institute of Biomedical Chemistry, Moscow, 119121 Russia


*aleom@yandex.ru
Received - 2016-02-12; Accepted - 2016-02-12

26S proteasome is an ATP-dependent protease complex that takes part in cell homeostasis maintenance by the selective degradation of regulatory and damaged proteins. The proteasomal genes expression in Saccharomyces cerevisiae yeast is coordinately regulated by the system, which consists of the Rpn4 transcription factor and its binding site, called PACE. The ability to modulate proteasomal activity by changing the expression of its genes is an essential tool that can be used in fundamental studies devoted to the mechanisms of proteasome dependent cell processes, as well as in applied research for developing strategies to correct proteasome activity in some pathological processes. In this work, we present a detailed description of our SaxBricks method that allows one to construct DNA-binding domains with custom specificity from nucleotide- specific TAL domains. Having applied the SaxBricks method, we created a modular transcriptional repressor for Rpn4-dependent genes that effectively suppresses the expression of proteasomal genes.

TALE, SaxBricks, Rpn4, proteasomal genes, artificial regulators of transcription



JMB-FOOTER RAS-JOURNALS