JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 42(2008) N 2 p. 277-284;
K.E. Balueva, A.A. Malygin, G.G. Karpova, G.A. Nevinsky, D.O. Zharkov

Interactions of human ribosomal protein S3 with intact and damaged DNA

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Received - 2007-06-04; Accepted - 2007-07-27

Human S3 (hS3) is a structural component of the ribosome and, in addition to its role in translation, possesses apurinic/apyrimidinic (AP) lyase activity, characteristic of DNA repair enzymes. Recombinant hS3 was isolated from inclusion bodies, refolded under different conditions, and tested for the ability to bind and cleave oligodeoxyribonucleotide substrates with various lesions abundant in genomic DNA: AP sites, uracil, 8-oxoguanine, 8-oxoadenine, 5,6-dihydrouracil, and hypoxanthine. It was found that hS3 is capable of cleaving AP sites via the β-elimination mechanism, producing a Schiff base covalent intermediate, but cannot cleave substrates with the other lesions. Refolding in the presence of Fe2+ and S2- did not increase hS3 activity, suggesting the absence of an iron-sulfur cluster. The binding of hS3 with DNA ligands containing oxidized or deaminated bases was less efficient than with intact DNA. It was assumed that the catalytic activity of hS3 towards AP sites is most likely unimportant for global DNA repair in vivo, but is possibly involved in repairing DNA sites in certain genome regions.

Ribosome, S3 protein, DNA repair, DNA glycosylases, apurinic/apyrimidinic sites



JMB-FOOTER RAS-JOURNALS