JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 50(2016) N 1 p. 91-97; DOI 10.1134/S0026893316010106 Full Text

R.M. Lee*, S.M. Jeong

Identification of a Novel Calcium (Ca2+)-Activated Chloride Channel Accessory Gene in Xenopus laevis

Department of Biochemistry and Molecular Cell Biology, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjingu, Seoul 143-701, Republic of Korea

*rmlee12@konkuk.ac.kr
Received - 2015-02-02; Accepted - 2015-03-18

Calcium (Ca2+)-activated chloride channel accessories (CLCAs) are putative anion channel-related proteins with diverse physiological functions. Exploring CLCA diversity is important for prediction of gene structure and function. In an effort to identify novel CLCA genes in Xenopus laevis, we successfully cloned and characterized a Xenopus laevis cDNA predicted to encode the xCLCA3 gene. Cloning of xCLCA3 was achieved by computational analysis, rapid amplification of cDNA ends (RACE), and a tissue distribution analysis by semi-quantitative reverse transcription (RT) PCR or real-time PCR. We obtained a 2958 bp xCLCA3 cDNA sequence with an open reading frame encoding 943 amino acids. According to the primary structure analysis, xCLCA3 contains a predicted signal sequence, multiple sites of N-linked (N-) glycosylation, N-myristoylation, PKA, PKC, and casein kinase II phosphorylation sites, five putative hydrophobic segments, and the HExxH metalloprotease motif. Additionally, the transmembrane prediction server yielded a preserved N-terminal CLCA domain and a von Willebrand factor type A domain with one transmembrane domain in the C-terminal region. Expression analysis showed that xCLCA3 is expressed in a number of tissues, with strong expression in the brain, colon, small intestine, lung, kidney, and spleen, and poor expression in the heart and liver. These results suggest that xCLCA3 may be a candidate CLCA family member as well as a metalloprotease, rather than just an ion channel accessory protein.

Ca2+-activated chloride channel accessory, CLCA, gene expression, HExxH motif, rapid amplify, cation of cDNA ends (RACE), real-time, Xenopus laevis



JMB-FOOTER RAS-JOURNALS