JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 47(2013) N 2 p. 259-266;
M.V. Darii1, A.R. Rakhimova1, V.N. Tashlitskii1, S.V. Kostyuk2, N.N. Veiko2, A.A. Ivanov3, A.L. Zhuze3, E.S. Gromova1*

Dimeric Bisbenzimidazoles: Cytotoxicity and Effects on DNA Methylation in Normal and Cancer Human Cells

1Department of Chemistry, Moscow State University, Moscow, 119992 Russia
2Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, 115478 Russia
3Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia

*gromova@genebee.msu.ru
Received - 2012-08-14; Accepted - 2012-10-08

Cancer cells are characterized by hypermethylation of the promoter regions of tumor suppressor genes. DNA methyltransferase inhibitors reactivate the genes, pointing to DNA methyltransferases as potential targets for anticancer therapy. Dimeric bisbenzimidazoles varying in the length of an oligomeric linker between two bisbenzimidazole residues (DB(n), where n is the number of methylene groups in the linker) were earlier shown to efficiently inhibit methylation of DNA duplexes by murine DNA methyltransferase Dnmt3a. Here, some of the compounds were tested for cytotoxicity, cell penetration, and effect on genomic DNA methylation in F-977 fetal lung fibroblasts and HeLa cervical cancer cells. Within the 0-60 M concentration range, only DB(11) exerted a significant toxic effect on normal cells, whereas the effects of DB(n) on cancer cells were not significant. DB(1) and DB(3) slightly stimulated proliferation of HeLa and F-977 cells, respectively. DB(1) and DB(3) penetrated into the nuclei of HeLa and F-977 cells and accumulated predominantly in or near the nucleolus, while DB(11) was incapable of nuclear penetration. HeLa cells incubated with 26 чM DB(1) or DB(3) displayed a decrease in methylation of the 18S rRNA gene, which was in the regions of predominant accumulation of DB(1) and DB(3). The same DB(3) concentration exerted a similar effect on F-977 cells. However, the overall genomic DNA methylation level remained unchanged in both of the cell lines. The results indicated that DB(n)-type compounds can be used to demethylate certain genes and are thereby promising as potential anticancer agents.

dimeric bisbenzimidazoles, F-977 human fetal lung fibroblasts, HeLa cervical cancer cells, cytotoxicity, DNA methylation



JMB-FOOTER RAS-JOURNALS