JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2024  1,200
2023  1,500
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 59(2025) N 6 p. 849-864; DOI 10.1134/S0026893325700323 Full Text

S.M. Rozov1*, E.V. Deineko2**

Recombinase-Based Engineering of Plant Genomes in the Era of Genome Editing

1Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

*rozov@bionet.nsc.ru
**deineko@bionet.nsc.ru
Received - 2025-04-25; Revised - 2025-05-26; Accepted - 2025-05-27

The rapidly evolving CRISPR/Cas-based genome editing technologies, which have dominated nearly all areas of molecular biology over the past decade, still face several unresolved challenges. One of the major limitations of current genome editing tools is the low efficiency of targeted long-sequence insertions. This issue is particularly critical in plant systems, where genome editing efficiency is hindered by specific cellular characteristics. Site-specific recombinases (SSRs), which have long been employed in genetic engineering to mediate various genomic rearrangements-including deletions, duplications, insertions, and inversions-are limited in their application by the requirement for preexisting recombination recognition sites in the genome. However, CRISPR/Cas and recombinase tools complement each other, and their combined use offers a powerful strategy to overcome key limitations of genome editing. The discovery of CRISPR-associated transposons such as CAST and OMEGA, which naturally utilize their own recombinases, marks a significant advance in genome engineering, providing an elegant example of the natural convergence between CRISPR and recombinase technologies.

site-specific recombinases, CRISPR, genome editing, RMCE, Genome Safe Harbors, Gene stacking, Prime Editing, CAST, OMEGA, SSAP



JMB-FOOTER RAS-JOURNALS